(New page: == Specify a Fourier transform <math>X(w)</math> == :<math> </math> == Inverse Fourier transform of <math>X(w)</math>== <math>\begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\inft...)
 
(Specify a Fourier transform X(w))
Line 1: Line 1:
 
== Specify a Fourier transform <math>X(w)</math> ==
 
== Specify a Fourier transform <math>X(w)</math> ==
:<math>       </math>
+
:<math>   X(w)=\frac{1}{4+jw}    </math>
 +
 
 
== Inverse Fourier transform of <math>X(w)</math>==
 
== Inverse Fourier transform of <math>X(w)</math>==
 
<math>\begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega
 
<math>\begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega

Revision as of 17:37, 8 October 2008

Specify a Fourier transform $ X(w) $

$ X(w)=\frac{1}{4+jw} $

Inverse Fourier transform of $ X(w) $

$ \begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega \end{align} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010