(New page: == INVERSE FOURIER TRANSFORM == <math> X(\omega) = \delta(\omega) + \delta(\omega - 1) </math> Knowing the formula for the Inverse Fourier transform <math>x(t)=\frac{1}{2\pi}\int_{-\in...)
 
Line 1: Line 1:
 
== INVERSE FOURIER TRANSFORM ==
 
== INVERSE FOURIER TRANSFORM ==
  
<math> X(\omega) = \delta(\omega) + \delta(\omega - 1) </math>
+
<math> X(\omega) = \delta(\omega) + \delta(\omega - 3) </math>
  
  
Line 10: Line 10:
 
We can proceed to compute its inverse
 
We can proceed to compute its inverse
  
<math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\delta(\omega)e^{j\omega t} + \delta(\omega - 1)e^{j\omega t} d\omega \ </math>
+
<math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\delta(\omega)e^{j\omega t} + \delta(\omega - 3)e^{j\omega t} d\omega \ </math>

Revision as of 17:08, 8 October 2008

INVERSE FOURIER TRANSFORM

$ X(\omega) = \delta(\omega) + \delta(\omega - 3) $


Knowing the formula for the Inverse Fourier transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega \, $

We can proceed to compute its inverse

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\delta(\omega)e^{j\omega t} + \delta(\omega - 3)e^{j\omega t} d\omega \ $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva