Line 1: Line 1:
 
  
  
Line 9: Line 8:
 
When  
 
When  
  
<math> t-2 < 0 \rightarrow x(t) = e^{3t-6} </math>
+
<math> t-2 < 0 \rightarrow x_1(t) = e^{3t-6} </math>
  
 
and when,
 
and when,
  
<math> t-2 >0 \rightarrow x(t) = e^{-3t-6} </math>
+
<math> t-2 >0 \rightarrow x_2(t) = e^{-3t-6} </math>
  
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
  
<math>\ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>
+
<math>\ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x_1(t)e^{-j\omega t}\,dt\ + \int_{-\infty}^{\infty}x_2(t)e^{-j\omega t}\,dt\</math>

Revision as of 16:27, 8 October 2008


$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-2 < 0 \rightarrow x_1(t) = e^{3t-6} $

and when,

$ t-2 >0 \rightarrow x_2(t) = e^{-3t-6} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x_1(t)e^{-j\omega t}\,dt\ + \int_{-\infty}^{\infty}x_2(t)e^{-j\omega t}\,dt\ $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva