(Fourier Transform of x(t))
(Fourier Transform of x(t))
Line 9: Line 9:
 
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt
 
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt
 
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t-t^2}-e^{-j8\pi t-t^2}}{2}e^{-j\omega t}dt
 
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t-t^2}-e^{-j8\pi t-t^2}}{2}e^{-j\omega t}dt
\\&= \int_{-\infty}^{\infty}\frac{e^{t(j8\pi t-t)}-e^{-t(j8\pi +t)}}{2}e^{-j\omega t}dt
+
\\&= \int_{-\infty}^{\infty}\frac{e^{t(j8\pi -t)}-e^{-t(j8\pi +t)}}{2}e^{-j\omega t}dt
 
+
\\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}-e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}}{2}e^{-j\omega t}dt  -\int_{-\infty}^{\infty}\frac{e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt
  
 
\end{align}</math>
 
\end{align}</math>

Revision as of 17:23, 8 October 2008

Specify a signal x(t)

$ x(t)=cos(8 \pi t)e^{-t^{2}} $

Fourier Transform of x(t)

$ \begin{align} X(\omega) &=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t-t^2}-e^{-j8\pi t-t^2}}{2}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{t(j8\pi -t)}-e^{-t(j8\pi +t)}}{2}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}-e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}}{2}e^{-j\omega t}dt -\int_{-\infty}^{\infty}\frac{e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt \end{align} $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin