(Specify a signal x(t))
(Fourier Transform of x(t))
Line 5: Line 5:
  
 
== Fourier Transform of x(t) ==
 
== Fourier Transform of x(t) ==
 +
:<math>\begin{align} X(\omega)  &=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt
 +
 +
\end{align}</math>

Revision as of 16:20, 8 October 2008

Specify a signal x(t)

$ x(t)=cos(8 \pi t)e^{-t^{2}} $

Fourier Transform of x(t)

$ \begin{align} X(\omega) &=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt \end{align} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal