(b)
Line 54: Line 54:
  
 
can be used to solve part b
 
can be used to solve part b
<math>H(j\omega) = \frac{1}{j\omega + 4}</math>
+
:: <math>h(t) = \mathcal{F}^{-1}\{ H(j\omega) \} = \mathcal{F}^{-1}\{ \frac{1}{4 + j\omega} \}</math>
 +
 
 +
:: <math> = \frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{e^{j\omega t}}{4+j\omega}\,d\omega </math>
 +
 
 +
I don't know how to evaluate this integral, I'm not sure if it can be. Any thoughts?
 +
 
 +
'''Using the table'''
 +
 
 +
Because the function <math>H\big(j\omega)</math> has the form <math> \frac{1}{a + j\omega}\,,a = 4 </math> the inverse Fourier transform is of the type <math>e^{-at}u\big(t) </math>
 +
 
 +
This results in the final answer of
 +
 
 +
:: <math>h(t) = e^{-4t}u\big(t)</math>

Revision as of 14:16, 8 October 2008

Lecture 17 PDF requires Adobe Reader 7 or greater

Main Concepts

Fourier Transforms and the frequency response of a system.

$ Y\big(\omega) = H(j \omega) X(\omega) $

The frequency response has a fundamental relationship to the unit step response through Fourier Transforms as follows

$ H(j\omega\big) = \mathcal{H}(\omega) = \mathcal{F}\{ h(t) \} $

From this, the unit step response can be found

$ h(t) = \mathcal{F}^{-1}\{ H(j\omega) \} $

Differential stuff....

Exercises

Tricky Fourier Transform

Compute the Fourier Transform of $ u\big(t-3) $

Dealing with Differentials

Given:

$ \frac{d y(t) }{dx} + 4y(t) = x(t) $
a) What is the frequency response of the system?
b)What is the unit impulse response h(t) of the system?

a

First transform into the frequency domain

$ \mathcal{F}\lbrace\frac{d y(t) }{dx} + 4y(t) = x(t)\rbrace $

Apply linearity

$ \mathcal{F}\lbrace\frac{d y(t) }{dx}\rbrace + 4\mathcal{F}\lbrace y(t)\rbrace = \mathcal{F}\lbrace x(t)\rbrace $

Use the differentiation property to reduce the differential term


$ j\omega\mathcal{F}\lbrace y(t)\rbrace + 4\mathcal{F}\lbrace y(t)\rbrace = \mathcal{F}\lbrace x(t)\rbrace $

Apply some arithmetic

$ \mathcal{F}\lbrace y(t)\rbrace = \frac{1}{j\omega + 4}\mathcal{F}\lbrace x(t)\rbrace $

From the main concepts the frequency response is the portion in front of $ \mathcal{F}\lbrace x(t)\rbrace $

$ H(j\omega) = \frac{1}{j\omega + 4} $

b

The fundamental relationship from the main concepts

can be used to solve part b

$ h(t) = \mathcal{F}^{-1}\{ H(j\omega) \} = \mathcal{F}^{-1}\{ \frac{1}{4 + j\omega} \} $
$ = \frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{e^{j\omega t}}{4+j\omega}\,d\omega $

I don't know how to evaluate this integral, I'm not sure if it can be. Any thoughts?

Using the table

Because the function $ H\big(j\omega) $ has the form $ \frac{1}{a + j\omega}\,,a = 4 $ the inverse Fourier transform is of the type $ e^{-at}u\big(t) $

This results in the final answer of

$ h(t) = e^{-4t}u\big(t) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang