(Dealing with Differentials)
(Dealing with Differentials)
Line 21: Line 21:
  
 
====a====
 
====a====
 +
 +
First transform into the frequency domain
 +
 +
::<math> \mathcal{F}\lbrace\frac{d y(t) }{dx} + 4y(t) = x(t)\rbrace</math>
 +
 +
Apply linearity
 +
 +
::<math> \mathcal{F}\lbrace\frac{d y(t) }{dx}\rbrace + 4\mathcal{F}\lbrace y(t)\rbrace = \mathcal{F}\lbrace x(t)\rbrace</math>
 +
 +
Use the differentiation property to reduce the differential term
 +
 +
 +
::<math> j\omega\mathcal{F}\lbrace y(t)\rbrace + 4\mathcal{F}\lbrace y(t)\rbrace = \mathcal{F}\lbrace x(t)\rbrace</math>
 +
 +
Apply some arithmetic
 +
 +
::<math> \mathcal{F}\lbrace y(t)\rbrace = \frac{1}{j\omega + 4}\mathcal{F}\lbrace x(t)\rbrace</math>
 +
 +
 +
 +
<math> \to H(j\omega) = \frac{1}{j\omega + 4}</math>

Revision as of 13:48, 8 October 2008

Lecture 17 PDF requires Adobe Reader 7 or greater

Main Concepts

Fourier Transforms and the frequency response of a system.

$ Y\big(\omega) = H(j \omega) X(\omega) $

Fourier transforms can be used to neatly and easily find the frequency response of a system.

Exercises

Tricky Fourier Transform

Compute the Fourier Transform of $ u\big(t-3) $

Dealing with Differentials

Given:

$ \frac{d y(t) }{dx} + 4y(t) = x(t) $
a) What is the frequency response of the system?
b)What is the unit impulse response h(t) of the system?

a

First transform into the frequency domain

$ \mathcal{F}\lbrace\frac{d y(t) }{dx} + 4y(t) = x(t)\rbrace $

Apply linearity

$ \mathcal{F}\lbrace\frac{d y(t) }{dx}\rbrace + 4\mathcal{F}\lbrace y(t)\rbrace = \mathcal{F}\lbrace x(t)\rbrace $

Use the differentiation property to reduce the differential term


$ j\omega\mathcal{F}\lbrace y(t)\rbrace + 4\mathcal{F}\lbrace y(t)\rbrace = \mathcal{F}\lbrace x(t)\rbrace $

Apply some arithmetic

$ \mathcal{F}\lbrace y(t)\rbrace = \frac{1}{j\omega + 4}\mathcal{F}\lbrace x(t)\rbrace $


$ \to H(j\omega) = \frac{1}{j\omega + 4} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal