(Problem 2 Fourier Transfer)
(Problem 2 Fourier Transfer)
Line 9: Line 9:
 
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt </math>
 
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt </math>
  
<math> = \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t} dt} + \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t} dt}
+
<math> = \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} + \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt}

Revision as of 13:11, 8 October 2008

Problem 2 Fourier Transfer

$ x(t) = \cos{\pi t} $

$ F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

$ = \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} + \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn