(→Problem 2 Fourier Transfer) |
|||
Line 5: | Line 5: | ||
<math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math> | <math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math> | ||
− | <math> \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt </math> | + | <math> \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt </math> |
− | <math> \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt </math> | + | <math> \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt </math> |
Revision as of 13:08, 8 October 2008
Problem 2 Fourier Transfer
$ x(t) = \cos{\pi t} $
$ F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt $
$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $
$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $