(Problem 2 Fourier Transfer)
(Problem 2 Fourier Transfer)
Line 1: Line 1:
 
==Problem 2 Fourier Transfer==
 
==Problem 2 Fourier Transfer==
  
<math> x(t) = \sin{\pi t} </math>
+
<math> x(t) = \cos{\pi t} </math>
  
 
<math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math>
 
<math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math>
  
<math> \chi(\omega) = \int_{-\infty}^\infty \sin{\pi t} e^{-j\omega t} dt </math>
+
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt </math>
 +
 
 +
<math> \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt </math>

Revision as of 13:07, 8 October 2008

Problem 2 Fourier Transfer

$ x(t) = \cos{\pi t} $

$ F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{\pi t} e^{-j\omega t} dt $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett