(Problem 2 Fourier Transfer)
(Problem 2 Fourier Transfer)
Line 5: Line 5:
 
<math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math>
 
<math> F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt </math>
  
<math> \chi(\omega) = \int_{-\infty}^\infty \sin{\pi t} dt </math>
+
<math> \chi(\omega) = \int_{-\infty}^\infty \sin{\pi t} e^{-j\omega t} dt </math>

Revision as of 12:51, 8 October 2008

Problem 2 Fourier Transfer

$ x(t) = \sin{\pi t} $

$ F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt $

$ \chi(\omega) = \int_{-\infty}^\infty \sin{\pi t} e^{-j\omega t} dt $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009