(New page: Let x(t)= <math>cos(t)</math> Then <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega</math> <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}cos(t)e^{j\omega...) |
|||
Line 8: | Line 8: | ||
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}cos(t)e^{j\omega t}d\omega</math> | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}cos(t)e^{j\omega t}d\omega</math> | ||
− | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} | + | <math>x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega</math> |
− | + | <math>x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{j(t}\right]_{-\infty}^{\infty}}</math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <math>x(t) = | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Revision as of 07:20, 8 October 2008
Let x(t)= $ cos(t) $
Then
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}cos(t)e^{j\omega t}d\omega $
$ x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega $
$ x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{j(t}\right]_{-\infty}^{\infty}} $