(New page: Let x(t)= <math>cos(t)</math> Then <math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math> <math>X(\omega) = \int_{-\infty}^{\infty}cos(2t)e^{-j\omega t}dt \,</math> <mat...)
 
Line 6: Line 6:
 
<math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
 
<math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
  
<math>X(\omega) = \int_{-\infty}^{\infty}cos(2t)e^{-j\omega t}dt \,</math>
+
<math>X(\omega) = \int_{-\infty}^{\infty}cos(t)e^{-j\omega t}dt</math>
  
<math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt \,</math>
+
<math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt</math>
 +
 
 +
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega}+int_{-\infty}^{\infty}e^{-jt(1+\omega)})</math>

Revision as of 06:49, 8 October 2008

Let x(t)= $ cos(t) $


Then

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}cos(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt $

$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega}+int_{-\infty}^{\infty}e^{-jt(1+\omega)}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett