(New page: For the signal: <math>X(\omega)= </math>)
 
Line 1: Line 1:
 
For the signal:
 
For the signal:
  
<math>X(\omega)= </math>
+
<math>X(\omega)= 2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi)</math>
 +
 
 +
<math>x(t) = \frac{1}{2\pi} \int_{-\infty}^\infty (2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega</math>
 +
 
 +
<math> = \int_{-\infty}^\infty ( \delta(\omega) + \frac{3}{2} \delta(\omega - 3\pi) - 2 \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega</math>
 +
 
 +
<math> x(t) = 1 + \frac{3}{2}e^{j3\pi t} - 2e^{-5\pi t}</math>

Revision as of 04:11, 8 October 2008

For the signal:

$ X(\omega)= 2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi) $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^\infty (2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega $

$ = \int_{-\infty}^\infty ( \delta(\omega) + \frac{3}{2} \delta(\omega - 3\pi) - 2 \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega $

$ x(t) = 1 + \frac{3}{2}e^{j3\pi t} - 2e^{-5\pi t} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang