Line 4: Line 4:
  
 
<font "size"=4>
 
<font "size"=4>
<math>x(t)=te^{-6t-6}u(t-6) \,\ </math>
+
<math>x(t)=(t-1)e^{-6t+6}u(t-1) \,\ </math>
 
</font>
 
</font>
  
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>
+
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)=(t-6)e^{-6t+6}u(t-6) e^{-j\omega t}dt \;</math>
 +
 
 +
 
 +
<math>x(t) \,\  </math>looks like  <math>te^{-6t}u(t) \,\ </math> so we evaluate that
 +
 
 +
the F.T of <math>te^{-6t}u(t) \,\ </math> is
 +
 
 +
<math>\int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \;</math>

Revision as of 18:37, 7 October 2008

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=(t-1)e^{-6t+6}u(t-1) \,\ $

$ X(\omega)=\int_{-\infty}^{\infty}x(t)=(t-6)e^{-6t+6}u(t-6) e^{-j\omega t}dt \; $


$ x(t) \,\ $looks like $ te^{-6t}u(t) \,\ $ so we evaluate that

the F.T of $ te^{-6t}u(t) \,\ $ is

$ \int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \; $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva