(New page: ==Fourier Transform== <math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math> <font "size"=4> <math>x(t)=te^{-6t-6}u(t-6)\,\</math> </font> <math>X(\omega)=\int_{-\infty}^{\i...)
 
Line 4: Line 4:
  
 
<font "size"=4>
 
<font "size"=4>
<math>x(t)=te^{-6t-6}u(t-6)\,\</math>
+
<math>x(t)=te^{-6t-6}u(t-6) \,\ </math>
 
</font>
 
</font>
  
 
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>
 
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>

Revision as of 18:18, 7 October 2008

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=te^{-6t-6}u(t-6) \,\ $

$ X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett