(New page: ==Fourier Transform== <math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math> <font "size"=4> <math>x(t)=te^{-6t-6}u(t-6)\,\</math> </font> <math>X(\omega)=\int_{-\infty}^{\i...) |
|||
Line 4: | Line 4: | ||
<font "size"=4> | <font "size"=4> | ||
− | <math>x(t)=te^{-6t-6}u(t-6)\,\</math> | + | <math>x(t)=te^{-6t-6}u(t-6) \,\ </math> |
</font> | </font> | ||
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math> | <math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math> |
Revision as of 18:18, 7 October 2008
Fourier Transform
$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $
$ x(t)=te^{-6t-6}u(t-6) \,\ $
$ X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt $