Line 1: Line 1:
 
<math> x(t) = e^{-|t-1|} \,</math><br><br>
 
<math> x(t) = e^{-|t-1|} \,</math><br><br>
 
<math> X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt</math><br><br>
<math> X(w) = \int_{-\infty}^{\1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt</math><br><br>
+
<math> X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt</math><br><br>
<math> X(w) = \int_{-\infty}^{\1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt</math><br><br>
+
<math> X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt</math><br><br>
 
<math> X(w) = e^{-1}\frac{e^{(1-jw)t}}{1-jw}\right]^{\infty}_0 }+e^{1}\frac{e^{-(1+jw)t}}{1+jw}\right]^{\infty}_0 }</math><br><br>
 
<math> X(w) = e^{-1}\frac{e^{(1-jw)t}}{1-jw}\right]^{\infty}_0 }+e^{1}\frac{e^{-(1+jw)t}}{1+jw}\right]^{\infty}_0 }</math><br><br>

Revision as of 16:41, 7 October 2008

$ x(t) = e^{-|t-1|} \, $

$ X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt $

$ X(w) = e^{-1}\frac{e^{(1-jw)t}}{1-jw}\right]^{\infty}_0 }+e^{1}\frac{e^{-(1+jw)t}}{1+jw}\right]^{\infty}_0 } $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett