(→Fourier Transform) |
(→Fourier Transform) |
||
Line 5: | Line 5: | ||
<math>X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \!</math> | <math>X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \!</math> | ||
− | <math> = \int_{-\infty}^{\infty} e^{ | + | <math> = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> |
+ | |||
+ | <math> = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> + <math> \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \!</math> |
Revision as of 15:27, 7 October 2008
Fourier Transform
Signal: x(t) = $ e^{3|t-1|} $
$ X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $
$ = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $
$ = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $ + $ \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \! $