Line 18: | Line 18: | ||
<math>=\frac{e^{-5t}e^{-jwt}}{-(5+jw)}\bigg]^{infty}_{0} + e^4*\int_{\infty}^{3}e^{-(4+jw)t}dt</math> | <math>=\frac{e^{-5t}e^{-jwt}}{-(5+jw)}\bigg]^{infty}_{0} + e^4*\int_{\infty}^{3}e^{-(4+jw)t}dt</math> | ||
− | <math>\frac{e^{-5t}e^{-jwt}}{-(5+jw)}\bigg]^{infty}_{0} + e^4 * \frac{e^{-(4+jw)t}}{-(4+jw)}\bigg]_3^\infty</math> | + | <math>=\frac{e^{-5t}e^{-jwt}}{-(5+jw)}\bigg]^{infty}_{0} + e^4 * \frac{e^{-(4+jw)t}}{-(4+jw)}\bigg]_3^\infty</math> |
+ | |||
+ | <math>=\frac{1}{(5+jw)}+ e^4 * \frac{e^{-(12+3jw)}}{(4+jw)}</math> |
Revision as of 14:55, 7 October 2008
signal
assume
$ x(t) = e^{-5t}u(t) + e^{-4(t-1)}u(t-3) $
answer
$ x(w) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt $
$ =\int_{-\infty}^{\infty}(e^{-5t}u(t) + e{-4(t-1)})e^{-jwt}dt $
$ =\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt $
$ =\frac{e^{-(5+jw)t}}{-(5+jw)}\bigg]^{\infty}_{0}+ \int_{3}^{\infty}e^{-4t}e^{4}e^{-jwt}dt $
$ =\frac{e^{-5t}e^{-jwt}}{-(5+jw)}\bigg]^{infty}_{0} + e^4*\int_{\infty}^{3}e^{-(4+jw)t}dt $
$ =\frac{e^{-5t}e^{-jwt}}{-(5+jw)}\bigg]^{infty}_{0} + e^4 * \frac{e^{-(4+jw)t}}{-(4+jw)}\bigg]_3^\infty $
$ =\frac{1}{(5+jw)}+ e^4 * \frac{e^{-(12+3jw)}}{(4+jw)} $