Line 14: Line 14:
 
<math>=\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt</math>
 
<math>=\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt</math>
  
<math>=\frac{e^{-(5+jw)t}}{-(5+jw)}</math>
+
<math>=\frac{e^{-(5+jw)t}}{-(5+jw)}\bigg]^{\infty}_{0}+ \int_{3}^{\infty}e^{-4t}e^{4}e^{-jwt}dt</math>
 +
 
 +
<math>=\frac{e^{-5t}e^{-jwt}}{-(5+jw)}</math>

Revision as of 14:48, 7 October 2008

signal

assume

$ x(t) = e^{-5t}u(t) + e^{-4(t-1)}u(t-3) $


answer

$ x(w) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt $

$ =\int_{-\infty}^{\infty}(e^{-5t}u(t) + e{-4(t-1)})e^{-jwt}dt $

$ =\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt $

$ =\frac{e^{-(5+jw)t}}{-(5+jw)}\bigg]^{\infty}_{0}+ \int_{3}^{\infty}e^{-4t}e^{4}e^{-jwt}dt $

$ =\frac{e^{-5t}e^{-jwt}}{-(5+jw)} $

Alumni Liaison

EISL lab graduate

Mu Qiao