(New page: ==signal == assume <math>x(t) = e^{-5t}u(t) + e^{-4(t-1)}u(t-3)</math> == answer == <math>x(w) = \int_{-\infty}^{\infty}</math>)
 
Line 8: Line 8:
 
== answer ==
 
== answer ==
  
<math>x(w) = \int_{-\infty}^{\infty}</math>
+
<math>x(w) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt</math>
 +
 
 +
<math>=\int_{-\infty}^{\infty}(e^{-5t}u(t) + e{-4(t-1)})e^{-jwt}dt</math>
 +
 
 +
<math>=\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt</math>

Revision as of 14:30, 7 October 2008

signal

assume

$ x(t) = e^{-5t}u(t) + e^{-4(t-1)}u(t-3) $


answer

$ x(w) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt $

$ =\int_{-\infty}^{\infty}(e^{-5t}u(t) + e{-4(t-1)})e^{-jwt}dt $

$ =\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett