Line 4: Line 4:
  
 
<math> \mathcal{X}(\omega) = 4 \pi \delta(\omega - 3) + 4 \pi \delta(\omega + 3) - 8 \pi \delta(\omega - 7) </math>
 
<math> \mathcal{X}(\omega) = 4 \pi \delta(\omega - 3) + 4 \pi \delta(\omega + 3) - 8 \pi \delta(\omega - 7) </math>
 +
 +
By the integral formula:
 +
 +
<math> x(t)= \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{X}(\omega) e^{-j\omega t}\,d \omega</math>
 +
 +
Therefore:
 +
 +
<math> x(t)= \frac{1}{2 \pi} \int_{-\infty}^{\infty} (4 \pi \delta(\omega - 3) + 4 \pi \delta(\omega + 3) - 8 \pi \delta(\omega - 7)) e^{-j\omega t}\,d \omega</math>

Revision as of 15:11, 7 October 2008

Specify a Fourier transform X(w) and compute its inverse Fourier transform using the integral formula. (Make sure your signal is not trivial to transform; it should be hard enough to be on a test).

Define X(w):

$ \mathcal{X}(\omega) = 4 \pi \delta(\omega - 3) + 4 \pi \delta(\omega + 3) - 8 \pi \delta(\omega - 7) $

By the integral formula:

$ x(t)= \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{X}(\omega) e^{-j\omega t}\,d \omega $

Therefore:

$ x(t)= \frac{1}{2 \pi} \int_{-\infty}^{\infty} (4 \pi \delta(\omega - 3) + 4 \pi \delta(\omega + 3) - 8 \pi \delta(\omega - 7)) e^{-j\omega t}\,d \omega $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach