Line 3: | Line 3: | ||
<math>x(t) = \int_{-\infty}^{\infty}X(\omega )e^{j\omega t}d\omega\,</math> | <math>x(t) = \int_{-\infty}^{\infty}X(\omega )e^{j\omega t}d\omega\,</math> | ||
− | <math> = \int_{-\infty}^{\infty}\delta(\omega )e^{j\omega t}d\omega + \int_{-\infty}^{\infty}\delta(\omega - 5)e^{j\omega t}d\omega + \int_{-\infty}^{\infty}\delta(\omega + 5)e^{j\omega t}d\omega\,</math> | + | <math> = \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega )e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega - 5)e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega + 5)e^{j\omega t}d\omega\,</math> |
Revision as of 13:22, 7 October 2008
$ X(\omega ) = \delta(\omega ) + \delta(\omega - 5) + \delta(\omega - 5)\, $
$ x(t) = \int_{-\infty}^{\infty}X(\omega )e^{j\omega t}d\omega\, $
$ = \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega )e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega - 5)e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega + 5)e^{j\omega t}d\omega\, $