Line 1: Line 1:
 
== Signal ==
 
== Signal ==
  
<math>x(t) = e^{3jt}*(u(t+5) - u(t-5)) + e^{-2t}*(u(t+1) - u(t-1))\,</math>
+
<math>x(t) = e^{3jt}*(u(t+5) - u(t-5)) + e^{-2t}*u(t)\,</math>
  
  
Line 8: Line 8:
 
<math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\,</math>
 
<math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\,</math>
  
<math> = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}*(u(t+1) - u(t-1))e^{-j\omega t}dt\,</math>
+
<math> = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt\,</math>

Revision as of 11:18, 7 October 2008

Signal

$ x(t) = e^{3jt}*(u(t+5) - u(t-5)) + e^{-2t}*u(t)\, $


Transformed

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\, $

$ = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt\, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett