Line 7: | Line 7: | ||
<math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\,</math> | <math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\,</math> | ||
+ | |||
<math> = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}*(u(t+1) - u(t-1))e^{-j\omega t}dt\,</math> | <math> = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}*(u(t+1) - u(t-1))e^{-j\omega t}dt\,</math> |
Revision as of 11:17, 7 October 2008
Signal
$ x(t) = e^{3jt}*(u(t+5) - u(t-5)) + e^{-2t}*(u(t+1) - u(t-1))\, $
Transformed
$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\, $
$ = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}*(u(t+1) - u(t-1))e^{-j\omega t}dt\, $