(New page: Compute the inverse fourier transform of the fourier transform below: <math>\,\mathcal{X}(\omega)= \delta(\omega - 3\pi) e^{-t}\,</math> <math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\inft...)
 
Line 5: Line 5:
  
 
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math>
 
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{-t} e^{j\omega t}\,d\omega \,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi} e^{(j(-3/pi) - 1)t}\,d\omega \,</math>

Revision as of 09:51, 6 October 2008

Compute the inverse fourier transform of the fourier transform below:

$ \,\mathcal{X}(\omega)= \delta(\omega - 3\pi) e^{-t}\, $


$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \, $

$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{-t} e^{j\omega t}\,d\omega \, $

$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \, $

$ \,x(t)=\frac{1}{2\pi} e^{(j(-3/pi) - 1)t}\,d\omega \, $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood