Line 5: Line 5:
  
  
<math>\,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt\,</math>
+
<math>\,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>
 +
 
 +
<math>\,\mathcal{X}(\omega)=\int_{-\infty}^{\infty} e^{-7t} u(t+1) e^{-j\omega t} dt + \int_{-\infty}^{\infty} e^{-23t} u(t-1) e^{-j\omega t}dt\,</math>
 +
 
 +
<math>\,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt dt\,</math>
 +
 
 +
<math>\left. \frac{e^{-15}}{-(j\omega +5)}e^{-(j\omega +5)t}\right]_{1}^{+\infty}</math>

Revision as of 07:17, 6 October 2008

Compute the fourier transform of this signal below:

$ \,x(t)=e^{-7t}u(t+1) + e^{23t}u(t-1)\, $


$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty} e^{-7t} u(t+1) e^{-j\omega t} dt + \int_{-\infty}^{\infty} e^{-23t} u(t-1) e^{-j\omega t}dt\, $

$ \,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt dt\, $

$ \left. \frac{e^{-15}}{-(j\omega +5)}e^{-(j\omega +5)t}\right]_{1}^{+\infty} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang