Line 1: Line 1:
 
Specify a signal x(t) and compute its Fourier transform using the integral formula.( Make a hard one)
 
Specify a signal x(t) and compute its Fourier transform using the integral formula.( Make a hard one)
 +
 +
<math>e^{-2(t-1)}u(t-1)\,</math>
  
 
<math>\,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>
 
<math>\,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>
 +
 +
<math>\,\mathcal{X}(\omega)= \int_{1}^{ \infty} e^{2-t(2+jw)}dt\,</math>
 +
 +
integrating and putting in limits
 +
 +
<math>\,\mathcal{X}(\omega)= \frac{e^{2-(2+jw)}}{2+jw} \,</math>
 +
 +
<math>\,\mathcal{X}(\omega)= \frac{e^{2-2-jw}}{2+jw} \,</math>
 +
 +
<math>\,\mathcal{X}(\omega)= \frac{e^{-jw}}{2+jw} \,</math>

Revision as of 18:08, 7 October 2008

Specify a signal x(t) and compute its Fourier transform using the integral formula.( Make a hard one)

$ e^{-2(t-1)}u(t-1)\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)= \int_{1}^{ \infty} e^{2-t(2+jw)}dt\, $

integrating and putting in limits

$ \,\mathcal{X}(\omega)= \frac{e^{2-(2+jw)}}{2+jw} \, $

$ \,\mathcal{X}(\omega)= \frac{e^{2-2-jw}}{2+jw} \, $

$ \,\mathcal{X}(\omega)= \frac{e^{-jw}}{2+jw} \, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva