Line 18: Line 18:
 
<math>du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
 
<math>du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
  
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t} + \frac{2}{j \omega}\int_{0}^{\infty}t^2 e^{-j\omega t}dt</math>
+
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}| + \frac{2}{j \omega}\int_{0}^{\infty}t^2 e^{-j\omega t}dt</math>
 +
 
 +
''Integration by Parts''
 +
 
 +
<math>u=t \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t}</math>
 +
 
 +
<math>du=1 \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>

Revision as of 08:48, 3 October 2008

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=t^2 u(t) $

$ X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt \; = \int_{0}^{\infty}t^2 e^{-j\omega t}dt $


Integration by Parts

$ \int u \; dv = uv - \int v \; du $

$ u=t^2 \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t} $

$ du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t} $

$ X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}| + \frac{2}{j \omega}\int_{0}^{\infty}t^2 e^{-j\omega t}dt $

Integration by Parts

$ u=t \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t} $

$ du=1 \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett