Line 7: | Line 7: | ||
</font> | </font> | ||
− | <math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt</math> | + | <math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt \; = \int_{0}^{\infty}t^2 e^{-j\omega t}dt</math> |
Revision as of 08:39, 3 October 2008
Fourier Transform
$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $
$ x(t)=t^2 u(t) $
$ X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt \; = \int_{0}^{\infty}t^2 e^{-j\omega t}dt $