Line 3: Line 3:
 
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
 
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
  
<font "size"=1>
 
 
<math>x(t)=t^2 u(t)</math>
 
<math>x(t)=t^2 u(t)</math>
</font>
 
  
 
<math>X(\omega))=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt</math>
 
<math>X(\omega))=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt</math>

Revision as of 08:37, 3 October 2008

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=t^2 u(t) $

$ X(\omega))=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett