(Part A)
(Part B)
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Part A==
 
==Part A==
 
  
 
<math>y(t) = K x(t-a)</math>
 
<math>y(t) = K x(t-a)</math>
Line 10: Line 9:
 
<math>= K e^{-jwa}e^{jwt}</math>
 
<math>= K e^{-jwa}e^{jwt}</math>
  
==
 
<math>y(t) = K x(t-a)</math>
 
  
if <math>x(t)=e^{jwt} </math> was inputed to the system
+
eigen function is <math>e^{-jwa}</math>
 +
 
 +
 
 +
<math>H(jw)=Ke^{-jwa}</math>
 +
 
 +
<math>h(t)=K\delta (t-a)</math>
 +
 
 +
<math>H(s)=\int_{-\infty}^{\infty}K\delta (\tau -a)e^{-s\tau}d\tau=Ke^{-as}</math>
 +
 
 +
==Part B==
 +
I REFERRED TO RONY WIJAYA'S ANSWER
 +
 
 +
 
 +
Signal defined in Question 1:
 +
<math>x(t) = cos(3\pi t+\pi) \!</math> <br>
 +
<br>
 +
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
 +
 
 +
<math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math>
 +
 
 +
From Question 1:
 +
<math>    x(t) = -\frac{1}{2}e^{j3\pi t}-\frac{1}{2}e^{-j3\pi t}</math><br>
 +
With this expression we can conclude:<br>
 +
<math>a_3 = -\frac{1}{2}</math>
 +
 
 +
<math>a_{-3} = -\frac{1}{2}</math>
  
<math>y(t) = K e^{jw(t-a)}</math>
 
  
<math>= K e^{-jwa}e^{jwt}</math> ==
+
<math> y(t)  = -\frac{1}{2}Ke^{-as}e^{j3\pi t}-\frac{1}{2}Ke^{-as}e^{-j3\pi t}</math><br>

Latest revision as of 17:40, 26 September 2008

Part A

$ y(t) = K x(t-a) $

if $ x(t)=e^{jwt} $ was inputed to the system

$ y(t) = K e^{jw(t-a)} $

$ = K e^{-jwa}e^{jwt} $


eigen function is $ e^{-jwa} $


$ H(jw)=Ke^{-jwa} $

$ h(t)=K\delta (t-a) $

$ H(s)=\int_{-\infty}^{\infty}K\delta (\tau -a)e^{-s\tau}d\tau=Ke^{-as} $

Part B

I REFERRED TO RONY WIJAYA'S ANSWER


Signal defined in Question 1: $ x(t) = cos(3\pi t+\pi) \! $

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $

From Question 1: $ x(t) = -\frac{1}{2}e^{j3\pi t}-\frac{1}{2}e^{-j3\pi t} $
With this expression we can conclude:
$ a_3 = -\frac{1}{2} $

$ a_{-3} = -\frac{1}{2} $


$ y(t) = -\frac{1}{2}Ke^{-as}e^{j3\pi t}-\frac{1}{2}Ke^{-as}e^{-j3\pi t} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang