(Part A)
(Part A)
Line 1: Line 1:
 
==Part A==
 
==Part A==
 
  
 
<math>y(t) = K x(t-a)</math>
 
<math>y(t) = K x(t-a)</math>

Revision as of 17:27, 26 September 2008

Part A

$ y(t) = K x(t-a) $

if $ x(t)=e^{jwt} $ was inputed to the system

$ y(t) = K e^{jw(t-a)} $

$ = K e^{-jwa}e^{jwt} $


eigen function is $ e^{-jwa} $


$ H(jw)=Ke^{-jwa} $

$ h(t)=K\delta (t-a) $

$ H(s)=\int_{-\infty}^{\infty}K\delta (\tau -a)e^{-s\tau}d\tau=Ke^{-as} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett