(Preview)
(DT LTI System Part a)
Line 2: Line 2:
 
     This is only a preview; changes have not yet been saved! (????)
 
     This is only a preview; changes have not yet been saved! (????)
 
== DT LTI System Part a ==
 
== DT LTI System Part a ==
 +
<br><br>
 +
<math> h[n] = cos[{\pi \over 3} n]u[n]</math><br><br>
 +
and the input signal, <br><br>
 +
<math>x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)}</math><br><br><br>
 +
<math> H(e^{jw}) = \sum_{k=0}^{\infty} cos[{\pi \over 3} n]e^{-jwn} = \sum_{k=0}^{\infty} {1 \over 2}(e^{j{\pi \over 3}n} + e^{-j{\pi \over 3}n})e^{-jwn}</math><br><br><br>
 +
:::<math> = \sum_{k=0}^{\infty} {1 \over 2} (e^{j({\pi \over 3} - w)n} + e^{-j({\pi \over 3} + w)n})

Revision as of 16:50, 26 September 2008

Preview

   This is only a preview; changes have not yet been saved! (????)

DT LTI System Part a



$ h[n] = cos[{\pi \over 3} n]u[n] $

and the input signal,

$ x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)} $


$ H(e^{jw}) = \sum_{k=0}^{\infty} cos[{\pi \over 3} n]e^{-jwn} = \sum_{k=0}^{\infty} {1 \over 2}(e^{j{\pi \over 3}n} + e^{-j{\pi \over 3}n})e^{-jwn} $


$ = \sum_{k=0}^{\infty} {1 \over 2} (e^{j({\pi \over 3} - w)n} + e^{-j({\pi \over 3} + w)n}) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin