(Problem 1: Ceiling of an Exponential)
Line 9: Line 9:
  
 
What is the PMF of <math>Y</math>? Is it one of the common random variables?  (Hint: for all <math>k</math>, find the quantity <math>P(Y > k)</math>. Then find the PMF)
 
What is the PMF of <math>Y</math>? Is it one of the common random variables?  (Hint: for all <math>k</math>, find the quantity <math>P(Y > k)</math>. Then find the PMF)
 +
 +
== Problem 2: Fair Wages ==
 +
 +
== Problem 3: An Uncommon PDF ==
 +
 +
== Problem 4: Gaussian Coordinates ==

Revision as of 07:19, 8 October 2008

Instructions

Homework 6 can be downloaded here on the ECE 302 course website.

Problem 1: Ceiling of an Exponential

$ X $ is an exponential random variable with paramter $ \lambda $. $ Y = \mathrm{ceil}(X) $, where the ceiling function $ \mathrm{ceil}(\cdot) $ rounds its argument up to the closest integer, i.e.:

        $ \mathrm{ceil}(a) $ = $ a $ if $ a $ is an integer
              = the smallest integer bigger than $ a $ if $ a $ is not an integer

What is the PMF of $ Y $? Is it one of the common random variables? (Hint: for all $ k $, find the quantity $ P(Y > k) $. Then find the PMF)

Problem 2: Fair Wages

Problem 3: An Uncommon PDF

Problem 4: Gaussian Coordinates

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva