(Periodic CT Signal)
Line 2: Line 2:
  
 
<math>x(t) = cos(3\pi t+\pi) \!</math> with fundamental frequency of <math>\pi</math>
 
<math>x(t) = cos(3\pi t+\pi) \!</math> with fundamental frequency of <math>\pi</math>
 +
<math>x(t) = \frac{e^{j(3\pi t+\pi)}+e^{-j(3\pi t+\pi)}</math>
  
==Rewritten in <math>e^{jw_0}</math> Form==
+
 
<math>x(t) =pi \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t})</math>
+
<math>x(t) =  \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t})</math>
  
 
==Fourier Series Coefficients==
 
==Fourier Series Coefficients==

Revision as of 16:35, 26 September 2008

Periodic CT Signal

$ x(t) = cos(3\pi t+\pi) \! $ with fundamental frequency of $ \pi $ $ x(t) = \frac{e^{j(3\pi t+\pi)}+e^{-j(3\pi t+\pi)} $


$ x(t) = \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t}) $

Fourier Series Coefficients

$ a_0 = \frac{4\pi}{3} $

$ a_1 = \frac{1}{1000} $

$ w_0 = 1000\pi\ $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood