(→Unit Impulse Response h(t) and System Function H(s)) |
(→Unit Impulse Response h(t) and System Function H(s)) |
||
Line 8: | Line 8: | ||
ii) | ii) | ||
<math>H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math> | <math>H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math> | ||
− | <math> | + | <math>=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau</math> |
Revision as of 15:55, 26 September 2008
Suppose we have a LTI CT signal y(t)=2x(t)
Unit Impulse Response h(t) and System Function H(s)
i) $ y(t)=2x(t)=> h(t)=2\delta(t) $
ii) $ H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $ $ =\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau $