(New page: <math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>. And the equation for fourier series of a function is as follows: <math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</mat...)
 
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
+
== Periodic DT Signal ==
  
 +
<math>x[n]=-\frac{1}{2}cos(3\pi n)+sin(3\pi n)\!</math>.
  
And the equation for fourier series of a function is as follows:
 
  
  
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
+
== Fourier Series Coefficients ==
  
  
We first put our signal into the first equation, and we get this monster:
+
<math>x[n]=-\frac{1}{2}[\frac{e^{j3\pi n}+e^{-j3\pi n}}{2}]+\frac{e^{j3\pi n}-e^{-3\pi n}}{j2}</math>
  
  
<math>a_0=\frac{1}{2\pi}\int_0^{2\pi}[4cos(2t) + (3j)sin(3t)]e^{0}dt</math>
+
<math>x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n}</math>
 +
 
 +
<math>a_{-1} = -\frac{1}{4}-j\frac{1}{2}</math>
 +
 
 +
<math>a_{0} = 0\!</math>
 +
 
 +
<math>a_{1} = -\frac{1}{4}+j\frac{1}{2}</math>

Latest revision as of 15:43, 26 September 2008

Periodic DT Signal

$ x[n]=-\frac{1}{2}cos(3\pi n)+sin(3\pi n)\! $.


Fourier Series Coefficients

$ x[n]=-\frac{1}{2}[\frac{e^{j3\pi n}+e^{-j3\pi n}}{2}]+\frac{e^{j3\pi n}-e^{-3\pi n}}{j2} $


$ x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n} $

$ a_{-1} = -\frac{1}{4}-j\frac{1}{2} $

$ a_{0} = 0\! $

$ a_{1} = -\frac{1}{4}+j\frac{1}{2} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn