(Finding the signal based on the properties)
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Guessing a periodic signal based on a few properties given==
 
==Guessing a periodic signal based on a few properties given==
 +
 +
Properties:
  
 
A) Fundamental Period = 2
 
A) Fundamental Period = 2
  
 
B) <font size = '4'><math>a_0 = 0</math></font>
 
B) <font size = '4'><math>a_0 = 0</math></font>
 +
 +
C) <math>\sum_{n = 0}^{2} x[n] = 1</math>
 +
 +
==Finding the signal based on the properties==
 +
 +
A) From A:
 +
 +
N = 2.
 +
 +
<math>x[n] = \sum_{k = 0}^{1} a_k e^{jk\pi n}</math>
 +
 +
<math>a_k = \frac{1}{2} \sum_{n=0}^{1} x[n] e^{-jk\pi n}</math>
 +
 +
 +
B) From B:
 +
 +
<math>a_0 = \frac{1}{2} \sum_{n=0}^{1} x[n] = 0</math>
 +
 +
Therefore 0.5x[0] + 0.5x[1] = 0
 +
 +
<math>a_1 = \frac{1}{2} \sum_{n=0}^{1} x[n] e^{-j\pi n} = \frac{1}{2} [x[0] + x[1]e^{-j\pi}]</math>
 +
 +
<math>x[0] = \sum_{k = 0}^{1} a_k e^{jk\pi 0} = \sum_{k = 0}^{1} a_k = a_0 +  a_1</math>
 +
 +
<math>x[1] = \sum_{k = 0}^{1} a_k e^{jk\pi 1} = a_0 e^0 + a_1 e^{j\pi} = a_0 + a_1 e^{j\pi}</math>
 +
 +
C) From C:
 +
 +
x[0] + x[1] + x[2] = 1
 +
 +
We know that x[0] + x[1] = 0 since <font size = '4'><math>a_0 = 0</math></font> and the period is 2.
 +
 +
Therefore x[2] = 1. If x[2] is 1 then x[0] = 1.
 +
 +
From earlier <font size = '4'><math>x[0] = a_0 + a_1</math></font>
 +
 +
Therefore <font size = '4'><math>a_1 = 1</math></font>
 +
 +
 +
Therefore, <font size = '4'><math>x[n]= \sum_{k = 0}^{1} a_k e^{jk\pi n} = a_0 e^0 + a_1 e^{j\pi n} = 1e^{j\pi n}</math></font>
 +
 +
 +
 +
Note: Original signal I used to come up with these properties was <font size = '4'><math>x[n] = sin(3\pi n + \frac{\pi}{2})</math></font>, which can be simplified to <font size = '4'><math>x[n] = e^{j\pi n}</math></font>

Latest revision as of 15:57, 26 September 2008

Guessing a periodic signal based on a few properties given

Properties:

A) Fundamental Period = 2

B) $ a_0 = 0 $

C) $ \sum_{n = 0}^{2} x[n] = 1 $

Finding the signal based on the properties

A) From A:

N = 2.

$ x[n] = \sum_{k = 0}^{1} a_k e^{jk\pi n} $

$ a_k = \frac{1}{2} \sum_{n=0}^{1} x[n] e^{-jk\pi n} $


B) From B:

$ a_0 = \frac{1}{2} \sum_{n=0}^{1} x[n] = 0 $

Therefore 0.5x[0] + 0.5x[1] = 0

$ a_1 = \frac{1}{2} \sum_{n=0}^{1} x[n] e^{-j\pi n} = \frac{1}{2} [x[0] + x[1]e^{-j\pi}] $

$ x[0] = \sum_{k = 0}^{1} a_k e^{jk\pi 0} = \sum_{k = 0}^{1} a_k = a_0 + a_1 $

$ x[1] = \sum_{k = 0}^{1} a_k e^{jk\pi 1} = a_0 e^0 + a_1 e^{j\pi} = a_0 + a_1 e^{j\pi} $

C) From C:

x[0] + x[1] + x[2] = 1

We know that x[0] + x[1] = 0 since $ a_0 = 0 $ and the period is 2.

Therefore x[2] = 1. If x[2] is 1 then x[0] = 1.

From earlier $ x[0] = a_0 + a_1 $

Therefore $ a_1 = 1 $


Therefore, $ x[n]= \sum_{k = 0}^{1} a_k e^{jk\pi n} = a_0 e^0 + a_1 e^{j\pi n} = 1e^{j\pi n} $


Note: Original signal I used to come up with these properties was $ x[n] = sin(3\pi n + \frac{\pi}{2}) $, which can be simplified to $ x[n] = e^{j\pi n} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett