(Example)
(Example)
Line 7: Line 7:
 
Let's look at: <math>x(t)=3*cos(3t)</math>, we know that the fudamental period of x(t) is
 
Let's look at: <math>x(t)=3*cos(3t)</math>, we know that the fudamental period of x(t) is
  
<math>w_0=2\pi/T</math>
+
<math>w_0=2\pi/T=3</math>
  
 
<math>x(t)=3cos(3t)</math>
 
<math>x(t)=3cos(3t)</math>
  
<math>=\frac{3}{2}[(e^{j*3*t})+(e^{-j*3*t})]</math>
+
<math>=\frac{3}{2}[(e^{j3t})+(e^{-j3t})]</math>
  
<math>=\frac{3}{2}(e^{j*3*t})+\frac{3}{2}(e^{-j*3*t})</math>
+
<math>=\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t})</math>
  
so we can see that when k=1
+
so we can see that when k=1, <math>a_1=\frac{3}{2}</math>, and when k=-1,<math>a_-1=\frac{3}{2}</math>
 +
 
 +
others are all zero

Revision as of 15:26, 26 September 2008

Definition of Periodic CT Signal

x(t) is periodic if there existes T>0 such that x(t)=x(T+t)

Example

Let's look at: $ x(t)=3*cos(3t) $, we know that the fudamental period of x(t) is

$ w_0=2\pi/T=3 $

$ x(t)=3cos(3t) $

$ =\frac{3}{2}[(e^{j3t})+(e^{-j3t})] $

$ =\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t}) $

so we can see that when k=1, $ a_1=\frac{3}{2} $, and when k=-1,$ a_-1=\frac{3}{2} $

others are all zero

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn