(→Example) |
(→Example) |
||
Line 4: | Line 4: | ||
==Example== | ==Example== | ||
+ | |||
+ | Let's look at: <math>x(t)=3*cos(3t)</math>, we know that the fudamental period of x(t) is | ||
+ | |||
+ | <math>w_0=2*\pi/T</math> | ||
+ | |||
<math>x(t)=3*cos(3t)</math> | <math>x(t)=3*cos(3t)</math> | ||
− | <math>=\frac{ | + | <math>=\frac{3}{2}[(e^{j*3*t})+(e^{-j*3*t})]</math> |
+ | |||
+ | <math>=\frac{3}{2}(e^{j*3*t})+\frac{3}{2}(e^{-j*3*t})</math> | ||
+ | |||
+ | so we can see that when k=1 |
Revision as of 15:19, 26 September 2008
Definition of Periodic CT Signal
x(t) is periodic if there existes T>0 such that x(t)=x(T+t)
Example
Let's look at: $ x(t)=3*cos(3t) $, we know that the fudamental period of x(t) is
$ w_0=2*\pi/T $
$ x(t)=3*cos(3t) $
$ =\frac{3}{2}[(e^{j*3*t})+(e^{-j*3*t})] $
$ =\frac{3}{2}(e^{j*3*t})+\frac{3}{2}(e^{-j*3*t}) $
so we can see that when k=1