(New page: Er ist momentan der umstrittenste rapper, viele hassen ihn, viele mögen ihn, ja ehmm...und er hat am Freitag hier in Köln den Comet als bester newcomer des jahres bekommen und ist im mo...) |
|||
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <math>\ h(t) = 5e^{-t} </math> | |
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <math>\ H(jw) = 5\int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau} </math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <math>\ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 </math><br><br> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <math>\ H(jw) = \frac{5}{1+ jw} </math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | So, | |
− | + | ||
− | + | <math>\ b_{0} = 0 </math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <math>\ b_{1} = (\frac{1 + 2j}{2}) (\frac{5}{1+jw}) </math> | |
− | + | ||
− | + | <math>\ b_{-1}= (\frac{1 + 2j}{2}) (\frac{5}{1 - j}) </math> | |
− | + | ||
− | + | <math>\ b_{2} = (\frac{5}{2j}) (\frac{5}{1+5j}) </math> | |
− | + | ||
− | + | <math>\ b_{-2}= (\frac{5}{2j}) (\frac{5}{1-5j}) </math> | |
− | + | ||
− | + | ||
− | + | So, | |
− | + | ||
− | + | <math>\ y(t) = (\frac{1 + 2j}{2}) (\frac{5}{1+jw})e^{jt} + (\frac{1 + 2j}{2})e^{-jt} (\frac{5}{1 - j}) + (\frac{5}{2j}) (\frac{5}{1+5j})e^{j4t} + (\frac{5}{2j}) (\frac{5}{1-5j})e^{-j4t} </math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Latest revision as of 18:04, 26 September 2008
$ \ h(t) = 5e^{-t} $
$ \ H(jw) = 5\int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau} $
$ \ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 $
$ \ H(jw) = \frac{5}{1+ jw} $
So,
$ \ b_{0} = 0 $
$ \ b_{1} = (\frac{1 + 2j}{2}) (\frac{5}{1+jw}) $
$ \ b_{-1}= (\frac{1 + 2j}{2}) (\frac{5}{1 - j}) $
$ \ b_{2} = (\frac{5}{2j}) (\frac{5}{1+5j}) $
$ \ b_{-2}= (\frac{5}{2j}) (\frac{5}{1-5j}) $
So,
$ \ y(t) = (\frac{1 + 2j}{2}) (\frac{5}{1+jw})e^{jt} + (\frac{1 + 2j}{2})e^{-jt} (\frac{5}{1 - j}) + (\frac{5}{2j}) (\frac{5}{1+5j})e^{j4t} + (\frac{5}{2j}) (\frac{5}{1-5j})e^{-j4t} $