Line 1: Line 1:
 
 
<math>\ h(t) = 5e^{-t} </math>
 
<math>\ h(t) = 5e^{-t} </math>
  
 
<math>\ H(jw) = 5\int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau}  </math>
 
<math>\ H(jw) = 5\int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau}  </math>
  
<math>\ H(jw) = 5[-{1 \over 1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 </math><br><br>
+
<math>\ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 </math><br><br>
<math>\ H(jw) = 5{1 \over 1+ jw}</math><br><br><br>
+
<math>\ H(jw) = \frac{5}{1+ jw} </math>

Revision as of 17:39, 26 September 2008

$ \ h(t) = 5e^{-t} $

$ \ H(jw) = 5\int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau} $

$ \ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 $

$ \ H(jw) = \frac{5}{1+ jw} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett