(A periodic CT signal)
(A periodic CT signal)
Line 11: Line 11:
  
  
Input CT signal: <math> x(t) = cos2t+sin2t</math>
+
Input CT signal: <math> x(t) = cos4t+sin2t</math>
  
 
<math>\,x(t)=\frac {e^{j4\pi t}+e^{-j4 \pi t}}{2} + \frac {e^{j2 \pi t}-e^{-j2 \pi t}}{2j}</math>
 
<math>\,x(t)=\frac {e^{j4\pi t}+e^{-j4 \pi t}}{2} + \frac {e^{j2 \pi t}-e^{-j2 \pi t}}{2j}</math>

Revision as of 15:29, 26 September 2008

A periodic CT signal

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

, where $ a_k $ is
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.


Input CT signal: $ x(t) = cos4t+sin2t $

$ \,x(t)=\frac {e^{j4\pi t}+e^{-j4 \pi t}}{2} + \frac {e^{j2 \pi t}-e^{-j2 \pi t}}{2j} $


$ x(t)=\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t} $

$ a_4=\frac{1}{2} $

$ a_{-4}=\frac{1}{2} $

$ a_2=\frac{1}{2j} $

$ a_{-2}=\frac{-1}{2j} $

otherwise $ \,a_k $ values are zero.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch