(DT signal & its Fourier Coefficients)
(DT signal & its Fourier Coefficients)
Line 15: Line 15:
 
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} ({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) -e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) </math>
 
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} ({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) -e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) </math>
  
<math>\ x[n] = \frac{5}{j2\sqrt{2}} e^{j (3\pi n)} + \frac{5}{2\sqrt{2}}e^{j (3\pi n)}  -e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) </math>
+
<math>\ x[n] = \frac{5}{j2\sqrt{2}} e^{j (3\pi n)} + \frac{5}{2\sqrt{2}}e^{j (3\pi n)}  -   e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) </math>

Revision as of 15:49, 26 September 2008

DT signal & its Fourier Coefficients

$ \ x[n] = 5sin(3 \pi n + \frac{\pi}{4}) $

Knowing its Fourier series is

$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n + \frac{\pi}{4})}-e^{-j (3\pi n + \frac{\pi}{4})}) $

$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n)} e^{j\frac{\pi}{4}}-e^{-j (3\pi n)}e^{-j\frac{\pi}{4}}) $

$ \ e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} $

$ \ e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} $

$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n)} ({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) -e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) $

$ \ x[n] = \frac{5}{j2\sqrt{2}} e^{j (3\pi n)} + \frac{5}{2\sqrt{2}}e^{j (3\pi n)} - e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett