(New page: ==Defining an LTI System== Let the LTI system be defined as: <math>\ y(t)=0.5 x(t-5) </math> ==Computing the Impulse Response and System Function== Inputting a delta into the system yei...)
 
(Computing the Impulse Response and System Function)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Defining an LTI System==
 
==Defining an LTI System==
  
Let the LTI system be defined as:
+
For an input x(t), let the LTI system be defined as:
  
<math>\ y(t)=0.5 x(t-5) </math>
+
<math>\ y(t)=0.5 x(t-5) u(t) </math>
  
 
==Computing the Impulse Response and System Function==
 
==Computing the Impulse Response and System Function==
Inputting a delta into the system yeilds:
+
Inputting a delta into the system yields:
 +
 
 +
<math>\ y(t)=h(t)=0.5 \delta(t-5) u(t) </math>
 +
 
 +
The System Function is defined by:
 +
 
 +
<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-st}\,dt\,</math>
 +
 
 +
Now computing the actual response:
 +
 
 +
<math>H(s)=\int_{-\infty}^{\infty} 0.5 \delta(t-5) u(t) e^{-st}\,dt\,</math>
 +
 
 +
which turns into:
 +
 
 +
 
 +
<math>H(s)=\int_{0}^{\infty} 0.5 \delta(t-5) e^{-st}\,dt\,</math>
 +
 
 +
Now using the sifting property of the delta function we obtain:
 +
 
 +
<math>\ H(s)= 0.5 e^{-5s} </math>
 +
 
 +
Remember<math>\ s= jw </math>
 +
 
 +
==Computing the Response of the Signal from Q1 using H(s)==
 +
 
 +
When a periodic signal represented as a linear combination of complex exponential is inputted into a LTI system the output is
 +
 
 +
<math>\ \Sigma a_{k} e^{jkwt} \longrightarrow sys \longrightarrow \Sigma H(jkw) a_{k} e^{jkwt} </math>
 +
 
 +
Therefore using this fact the system's output to the input of <math>\ cos(2 \pi t/3) sin(2 \pi t/9) </math> is
 +
 
 +
<math>\ y(t)= \frac{j}{8} e^{-10 \frac{2 \pi}{9}} e^{2 \frac{2 \pi}{9}t}  -\frac{j}{8} e^{10 \frac{2 \pi}{9}}e^{-2 \frac{2 \pi}{9}t} - \frac{j}{8} e^{-20 \frac{2 \pi}{9} e^{4 \frac{2 \pi}{9}t}} + \frac{j}{8} e^{20 \frac{2 \pi}{9} e^{-4 \frac{2 \pi}{9}t}}</math>

Latest revision as of 16:50, 26 September 2008

Defining an LTI System

For an input x(t), let the LTI system be defined as:

$ \ y(t)=0.5 x(t-5) u(t) $

Computing the Impulse Response and System Function

Inputting a delta into the system yields:

$ \ y(t)=h(t)=0.5 \delta(t-5) u(t) $

The System Function is defined by:

$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-st}\,dt\, $

Now computing the actual response:

$ H(s)=\int_{-\infty}^{\infty} 0.5 \delta(t-5) u(t) e^{-st}\,dt\, $

which turns into:


$ H(s)=\int_{0}^{\infty} 0.5 \delta(t-5) e^{-st}\,dt\, $

Now using the sifting property of the delta function we obtain:

$ \ H(s)= 0.5 e^{-5s} $

Remember$ \ s= jw $

Computing the Response of the Signal from Q1 using H(s)

When a periodic signal represented as a linear combination of complex exponential is inputted into a LTI system the output is

$ \ \Sigma a_{k} e^{jkwt} \longrightarrow sys \longrightarrow \Sigma H(jkw) a_{k} e^{jkwt} $

Therefore using this fact the system's output to the input of $ \ cos(2 \pi t/3) sin(2 \pi t/9) $ is

$ \ y(t)= \frac{j}{8} e^{-10 \frac{2 \pi}{9}} e^{2 \frac{2 \pi}{9}t} -\frac{j}{8} e^{10 \frac{2 \pi}{9}}e^{-2 \frac{2 \pi}{9}t} - \frac{j}{8} e^{-20 \frac{2 \pi}{9} e^{4 \frac{2 \pi}{9}t}} + \frac{j}{8} e^{20 \frac{2 \pi}{9} e^{-4 \frac{2 \pi}{9}t}} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett