(→Computing the Impulse Response and System Function) |
(→Computing the Impulse Response and System Function) |
||
Line 26: | Line 26: | ||
<math>\ H(s)= 0.5 e^{-5s} </math> | <math>\ H(s)= 0.5 e^{-5s} </math> | ||
+ | |||
+ | Remember<math>\ s= jw </math> | ||
+ | |||
+ | ==Computing the Response of the Signal from Q1 using H(s)== | ||
+ | |||
+ | When a periodic signal represented as a linear combination of complex exponentials is inputted into a LTI system the output is | ||
+ | |||
+ | <math> \sigma </math> |
Revision as of 16:21, 26 September 2008
Defining an LTI System
For an input x(t), let the LTI system be defined as:
$ \ y(t)=0.5 x(t-5) u(t) $
Computing the Impulse Response and System Function
Inputting a delta into the system yields:
$ \ y(t)=h(t)=0.5 \delta(t-5) u(t) $
The System Function is defined by:
$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-st}\,dt\, $
Now computing the actual response:
$ H(s)=\int_{-\infty}^{\infty} 0.5 \delta(t-5) u(t) e^{-st}\,dt\, $
which is turns into:
$ H(s)=\int_{0}^{\infty} 0.5 \delta(t-5) e^{-st}\,dt\, $
Now using the sifting property of the delta function we obtain:
$ \ H(s)= 0.5 e^{-5s} $
Remember$ \ s= jw $
Computing the Response of the Signal from Q1 using H(s)
When a periodic signal represented as a linear combination of complex exponentials is inputted into a LTI system the output is
$ \sigma $