(Define a Periodic CT Signal and Compute its Fourier Series Coefficients)
Line 6: Line 6:
 
The Fourier Series can be easily found by treating  
 
The Fourier Series can be easily found by treating  
  
<math> Asin(\omega_0t) = (A/ j2)*(e^{j\omega_0t} - e^{-j\omega_0t})  </math>
+
<math> Asin(\omega_0t) = \frac{A*(e^{j\omega_0t} - e^{-j\omega_0t})}{2j} </math>
 
   
 
   
 
and  
 
and  
  
<math>  Acos(\omega_0t) = (A/2)*(e^{j\omega_0t} + e^{-j\omega_0t}) </math>
+
<math>  Acos(\omega_0t) = \frac{A*(e^{j\omega_0t} + e^{-j\omega_0t})}{2} </math>
  
 
This alows us to to put x(t) in the form of
 
This alows us to to put x(t) in the form of
Line 18: Line 18:
 
which gives us
 
which gives us
  
<math> x(t) = (4/ j2)*(e^{j3t} - e^{-j3t}) + (8/2)*(e^{j7t} + e^{-j7t}) </math>
+
<math> x(t) = \frac{4*(e^{j3t} - e^{-j3t})}{2j} + \frac{8*(e^{j7t} + e^{-j7t})}{2} </math>
  
 
Simplifying and distributing
 
Simplifying and distributing
  
<math> x(t) = (2 / j)*e^{j3t} - (2 / j)*e^{-j3t} + 4e^{j7t} + 4e^{-j7t} </math>
+
<math> x(t) = \frac{2*e^{j3t} }{j}- \frac{2*e^{j3t} }{j} + 4e^{j7t} + 4e^{-j7t} </math>
  
<math>\ a_{-3} = 2/j </math>
+
<math>\ a_{-3} = \frac{2}{j} </math>
  
<math>\ a_{3}= -2/j </math>
+
<math>\ a_{3}= \frac{-2}{j} </math>
  
 
<math>\ a_{-7} = 4 </math>
 
<math>\ a_{-7} = 4 </math>

Revision as of 14:12, 26 September 2008

Define a Periodic CT Signal and Compute its Fourier Series Coefficients

Let's start this process by defining our signal. For simplicities sake lets use the the signal

$ x(t) = 4sin(3t) + 8cos(7t) $

The Fourier Series can be easily found by treating

$ Asin(\omega_0t) = \frac{A*(e^{j\omega_0t} - e^{-j\omega_0t})}{2j} $

and

$ Acos(\omega_0t) = \frac{A*(e^{j\omega_0t} + e^{-j\omega_0t})}{2} $

This alows us to to put x(t) in the form of

$ x(t) = \sum_{k=- \infty }^ \infty a_ke^{jk\omega_0t} $

which gives us

$ x(t) = \frac{4*(e^{j3t} - e^{-j3t})}{2j} + \frac{8*(e^{j7t} + e^{-j7t})}{2} $

Simplifying and distributing

$ x(t) = \frac{2*e^{j3t} }{j}- \frac{2*e^{j3t} }{j} + 4e^{j7t} + 4e^{-j7t} $

$ \ a_{-3} = \frac{2}{j} $

$ \ a_{3}= \frac{-2}{j} $

$ \ a_{-7} = 4 $

$ \ a{_7} = 4 $

all other $ \ a_k = 0 $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison