(A Periodic DT Signal)
(A Periodic DT Signal)
Line 6: Line 6:
 
<br><br>
 
<br><br>
  
<math> x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {7 \over 2j}[e^{j({4\pi \over N}-{\pi \over 2}n)}-e^{-j({4\pi \over N} - {\pi \over 2})n}]</math>
+
<math> x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {7 \over 2j}[e^{j({4\pi \over N}n-{\pi \over 2})}-e^{-j({4\pi \over N}n - {\pi \over 2})}]</math>
 
<br><br>
 
<br><br>
The Fourth term on the right hand goes away since <math> e^{j{\pi \over 2}n} \text{ and } e^{-j{\pi \over 2}n} </math> are zero.
+
 
 +
wrong ---> The Fourth term on the right hand goes away since <math> e^{j{\pi \over 2}n} \text{ and } e^{-j{\pi \over 2}n} </math> are zero.
 +
 
 
<br><br>
 
<br><br>
 
<math> x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] </math>
 
<math> x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] </math>
 +
<br><br>
 +
<math>x[n] = 1 + ({1 \over 2j} + ) +

Revision as of 14:09, 26 September 2008

A Periodic DT Signal


$ x[n] = 1 + sin({2\pi \over N})n + 5cos({2\pi \over N})n + 7sin({4\pi \over N}n - {\pi \over 2}) $

The signal above x[n] is periodic with period N.

$ x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {7 \over 2j}[e^{j({4\pi \over N}n-{\pi \over 2})}-e^{-j({4\pi \over N}n - {\pi \over 2})}] $

wrong ---> The Fourth term on the right hand goes away since $ e^{j{\pi \over 2}n} \text{ and } e^{-j{\pi \over 2}n} $ are zero.



$ x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] $

$ x[n] = 1 + ({1 \over 2j} + ) + $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett