(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<nowiki>Insert non-formatted text here</nowiki>
+
From the memoryless property of''' Exponential Distribution''' function:
 +
 
 +
Suppose '''E(1,λ) and E(1,μ)''' are independent, then;
 +
 
 +
P [min{ E(1,λ) , E(1,μ) } > t] = P [E(1,λ) > t] . P [E(1,μ) } > t]
 +
 
 +
        = exp (-λt) . exp (-μt)
 +
 
 +
        = exp {-(λ + μ)t}
 +
 
 +
which shows that minimum of E(1,λ) and E(1,μ) is exponentially distributed.
  
From the memoryless property of Exponential Distribution function:
 
Suppose E1,λ and E1,μ are independent, then;
 
P[min{ E1,λ , E1,μ } > t] = P[E1,λ > t] . P[E1,μ } > t]
 
        = eˉλt . eˉμt
 
        = eˉ(λ + μ)t
 
which shows that minimum of E1,λ and E1,μ is exponentially distributed.
 
 
So,
 
So,
E1, λ1+ λ2+ λ3+……. λn = min { E1,λ1, E1,λ2, E1,λ3, ……….., E1,λn }
+
 
 +
'''E(1, λ1+ λ2+ λ3+……. λn) = min { E(1,λ1), E(1,λ2), E(1,λ3), ……….., E(1,λn) }'''
 +
 
 
Here, if we put λ = 1, then;
 
Here, if we put λ = 1, then;
E1, 1+ 2+ 3+……. n = min { E1,1, E1,2, E1,3, ……….., E1,n }
+
 
 +
'''E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }'''

Latest revision as of 17:50, 6 October 2008

From the memoryless property of Exponential Distribution function:

Suppose E(1,λ) and E(1,μ) are independent, then;

P [min{ E(1,λ) , E(1,μ) } > t] = P [E(1,λ) > t] . P [E(1,μ) } > t]

= exp (-λt) . exp (-μt)

= exp {-(λ + μ)t}

which shows that minimum of E(1,λ) and E(1,μ) is exponentially distributed.

So,

E(1, λ1+ λ2+ λ3+……. λn) = min { E(1,λ1), E(1,λ2), E(1,λ3), ……….., E(1,λn) }

Here, if we put λ = 1, then;

E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch